### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (2,9-Diethoxy-1,10-phenanthroline- $\kappa^2 N, N'$ )bis(thiocyanato- $\kappa N$ )cobalt(II)

# Xian-Fu Zheng, Hui Su, Zhan-Fang Zhou, Chun-Hong Kou and Cao-Yuan Niu\*

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu\_cy2000@yahoo.com.cn

Received 23 October 2008; accepted 27 October 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.070; wR factor = 0.239; data-to-parameter ratio = 15.1.

In the title complex,  $[Co(NCS)_2(C_{16}H_{16}N_2O_2)]$ , the Co<sup>II</sup> ion is coordinated by two N atoms from one 2,9-diethoxy-1,10phenanthroline ligand and two N atoms from two different thiocyanate ligands in a distorted tetrahedral environment. The Co–N bonds involving the thiocyanate ligands are significantly shorter than the other two Co–N bonds. The atoms of one of the ethoxy groups are essentially coplanar with the phenanthroline ring  $[N=C-O-C = 178.8 (4)^{\circ}]$ , while the other ethoxy group is slightly twisted from the phenanthroline ring plane  $[N=C-O-C = 167.2 (4)^{\circ}]$ . In the crystal structure, there is a weak  $\pi$ - $\pi$  stacking interaction between two symmetry-related phenanthroline rings with a centroid–centroid distance of 3.706 (4) Å.

#### **Related literature**

For 1,10-phenanthroline coordination compounds with transition metal atoms as potential strong luminescent materials, see: Majumdera *et al.* (2006); Bie *et al.* (2006); Pijper *et al.* (1984).



#### Experimental

#### Crystal data

 $\begin{bmatrix} \text{Co}(\text{NCS})_2(\text{C}_{16}\text{H}_{16}\text{N}_2\text{O}_2) \end{bmatrix} & V = 2009.4 \text{ (6)} \text{ Å}^3 \\ M_r = 443.40 & Z = 4 \\ \text{Monoclinic, } P2_1/n & \text{Mo } K\alpha \text{ radiation} \\ a = 8.7072 \text{ (16) Å} & \mu = 1.08 \text{ mm}^{-1} \\ b = 15.625 \text{ (3) Å} & T = 291 \text{ (2) K} \\ c = 14.828 \text{ (3) Å} & 0.34 \times 0.20 \times 0.10 \text{ mm} \\ \beta = 95.082 \text{ (3)}^{\circ} \end{array}$ 

#### Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T<sub>min</sub> = 0.707, T<sub>max</sub> = 0.899

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.070$ | 246 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.239$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 1.80 \text{ e} \text{ Å}^{-3}$    |
| 3726 reflections                | $\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$ |

10517 measured reflections

 $R_{\rm int} = 0.031$ 

3726 independent reflections

2904 reflections with  $I > 2\sigma(I)$ 

## Table 1 Selected geometric parameters (Å, $^{\circ}$ ).

| -         |             |           |             |
|-----------|-------------|-----------|-------------|
| Co1-N3    | 1.928 (4)   | Co1-N1    | 2.035 (4)   |
| Co1-N4    | 1.930 (5)   | Co1-N2    | 2.038 (4)   |
| N3-Co1-N4 | 109.33 (18) | N3-Co1-N2 | 114.22 (17) |
| N3-Co1-N1 | 116.67 (17) | N4-Co1-N2 | 113.12 (18) |
| N4-Co1-N1 | 119.86 (17) | N1-Co1-N2 | 81.08 (16)  |

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2718).

#### References

- Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). *Mater. Lett.* **60**, 2475–2479.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Majumdera, A. Westerhausen, M., Kneifel, A. N., Sutter, J. P., Daroc, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.
- Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404.
- Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). SAINT. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.

Acta Cryst. (2008). E64, m1484 [doi:10.1107/S160053680803496X]

### (2,9-Diethoxy-1,10-phenanthroline- $\kappa^2 N, N'$ ) bis(thiocyanato- $\kappa N$ ) cobalt(II)

#### X.-F. Zheng, H. Su, Z.-F. Zhou, C.-H. Kou and C.-Y. Niu

#### Comment

Derivatives of 1,10-phenanthroline can be used as multi-dentate ligands. Their coordination compounds with transition metal atoms possess potential as strong luminescent materials (Majumdera *et al.*, 2006; Bie, *et al.*, 2006) and antimycoplasmal activity (Pijper, *et al.*, 1984).

In the title compound the Co<sup>II</sup> ion is coordinated by two nitrogen atoms from one phenanthroline ring (N1, N2) and two nitrogen atoms from two different thiocyanate ligands (N3, N4) forming a distorted tetrahedral environment (Fig. 1). The Co1—N1 and Co1—N2 bond lengths are longer than the Co1—N3 and Co1—N4 bond lengths. The N1—Co1—N2 bond angle of 81.08 (16) ° involving the two phenanthroline nitrogen atoms is the smallest coordination angle (Table 1). All other N—Co1—N bond angles are larger than the ideal 109.5 °. The atoms of one of the ethoxy groups are essentially co-planar with the phenanthroline ring [N2=C10-O2-C17 = 178.8 (4)°] while the other ethoxy group is slightly twisted from the phenanthroline ring plane [N1=C1-O1-C15 = 167.2 (4)°]. In the crystal structure, weak  $\pi$ - $\pi$  stacking interactions between pairs of symmetry related phenanthroline rings form a centroid-to-centroid distance of 3.706 (4) Å (Fig. 2).

#### Experimental

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, *et al.*, 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol), NH<sub>4</sub>SCN (0.016 g, 0.2 mmol), and Co(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.037 g, 0.1 mmol) in 30 ml me thanol afforded blue block single crystals in about 10 days (yield about 67%).

#### Refinement

The H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic H atoms; C—H = 0.97 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for methylene H atoms; C—H = 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms]. The final difference Fourier map had a highest peak at 0.90 Å from atom O1 and a deepest hole at 0.90 Å from atom S2, but were otherwise featureless.

#### **Figures**



Fig. 1. A view of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.



Fig. 2. Part of the crystal structure showing intermolecular  $\pi$ - $\pi$  stacking indicated by dashed lines. All H atoms have been omitted for clarity.

### (2,9-Diethoxy-1,10-phenanthroline- $\kappa^2 N$ , N')bis(thiocyanato- $\ \kappa N$ )cobalt(II)

| Crystal data                                                                            |                                                      |
|-----------------------------------------------------------------------------------------|------------------------------------------------------|
| [Co(NCS) <sub>2</sub> (C <sub>16</sub> H <sub>16</sub> N <sub>2</sub> O <sub>2</sub> )] | $F_{000} = 908$                                      |
| $M_r = 443.40$                                                                          | $D_{\rm x} = 1.466 {\rm Mg m}^{-3}$                  |
| Monoclinic, $P2_1/n$                                                                    | Mo <i>K</i> $\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                                                                     | Cell parameters from 3449 reflections                |
| <i>a</i> = 8.7072 (16) Å                                                                | $\theta = 2.6 - 25.5^{\circ}$                        |
| b = 15.625 (3)  Å                                                                       | $\mu = 1.08 \text{ mm}^{-1}$                         |
| c = 14.828 (3) Å                                                                        | T = 291 (2)  K                                       |
| $\beta = 95.082 \ (3)^{\circ}$                                                          | Block, blue                                          |
| V = 2009.4 (6) Å <sup>3</sup>                                                           | $0.34 \times 0.20 \times 0.10 \text{ mm}$            |
| Z = 4                                                                                   |                                                      |

#### Data collection

| Siemens SMART CCD<br>diffractometer                            | 3726 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2904 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.031$                  |
| T = 291(2)  K                                                  | $\theta_{\text{max}} = 25.5^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.6^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 10$               |
| $T_{\min} = 0.707, \ T_{\max} = 0.899$                         | $k = -18 \rightarrow 12$               |
| 10517 measured reflections                                     | $l = -17 \rightarrow 16$               |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.070$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.239$                                      | $w = 1/[\sigma^2(F_o^2) + (0.1606P)^2 + 1.5683P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.07                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 3726 reflections                                       | $\Delta \rho_{max} = 1.80 \text{ e } \text{\AA}^{-3}$                               |
| 246 parameters                                         | $\Delta \rho_{\rm min} = -0.49 \ e \ {\rm \AA}^{-3}$                                |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

#### Special details

methods

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|--------------|--------------|---------------------------|
| Col | 0.90632 (7) | 0.18324 (4)  | 0.31994 (4)  | 0.0446 (3)                |
| S1  | 0.6802 (3)  | 0.18997 (12) | 0.02186 (11) | 0.0835 (6)                |
| S2  | 1.4386 (2)  | 0.18412 (11) | 0.30008 (16) | 0.0841 (6)                |
| 01  | 0.8363 (4)  | 0.3691 (2)   | 0.3802 (2)   | 0.0599 (9)                |
| O2  | 0.9610 (5)  | -0.0115 (2)  | 0.2896 (3)   | 0.0668 (10)               |
| N1  | 0.8007 (4)  | 0.2359 (3)   | 0.4237 (2)   | 0.0474 (9)                |
| N2  | 0.8523 (5)  | 0.0737 (3)   | 0.3847 (3)   | 0.0508 (10)               |
| N3  | 0.8028 (5)  | 0.1958 (3)   | 0.2003 (3)   | 0.0577 (11)               |
| N4  | 1.1253 (5)  | 0.1983 (3)   | 0.3143 (3)   | 0.0571 (11)               |
| C1  | 0.7782 (5)  | 0.3180 (3)   | 0.4418 (3)   | 0.0461 (11)               |
| C2  | 0.7004 (7)  | 0.3438 (4)   | 0.5164 (4)   | 0.0658 (15)               |
| H2  | 0.6861      | 0.4017       | 0.5275       | 0.079*                    |
| C3  | 0.6473 (7)  | 0.2855 (5)   | 0.5710 (4)   | 0.0685 (16)               |
| H3  | 0.5963      | 0.3032       | 0.6203       | 0.082*                    |
| C4  | 0.6667 (6)  | 0.1969 (4)   | 0.5557 (4)   | 0.0601 (14)               |
| C5  | 0.6155 (7)  | 0.1293 (5)   | 0.6092 (4)   | 0.0719 (17)               |
| H5  | 0.5611      | 0.1424       | 0.6586       | 0.086*                    |
| C6  | 0.6434 (7)  | 0.0464 (5)   | 0.5905 (4)   | 0.0741 (18)               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H6   | 0.6090     | 0.0036      | 0.6274     | 0.089*      |
|------|------------|-------------|------------|-------------|
| C7   | 0.7254 (6) | 0.0239 (4)  | 0.5145 (4) | 0.0593 (13) |
| C8   | 0.7608 (7) | -0.0601 (4) | 0.4899 (4) | 0.0698 (16) |
| H8   | 0.7302     | -0.1055     | 0.5247     | 0.084*      |
| C9   | 0.8390 (7) | -0.0767 (4) | 0.4160 (4) | 0.0680 (15) |
| Н9   | 0.8624     | -0.1326     | 0.4004     | 0.082*      |
| C10  | 0.8837 (6) | -0.0064 (3) | 0.3637 (4) | 0.0556 (12) |
| C11  | 0.7747 (5) | 0.0888 (3)  | 0.4597 (3) | 0.0508 (12) |
| C12  | 0.7455 (5) | 0.1759 (3)  | 0.4801 (3) | 0.0455 (11) |
| C13  | 0.7502 (6) | 0.1927 (3)  | 0.1260 (4) | 0.0503 (12) |
| C14  | 1.2557 (6) | 0.1921 (3)  | 0.3084 (3) | 0.0512 (12) |
| C15  | 0.8523 (7) | 0.4599 (4)  | 0.3978 (4) | 0.0715 (16) |
| H15A | 0.9004     | 0.4697      | 0.4585     | 0.086*      |
| H15B | 0.7522     | 0.4875      | 0.3922     | 0.086*      |
| C16  | 0.9501 (8) | 0.4942 (4)  | 0.3297 (5) | 0.090 (2)   |
| H16A | 1.0500     | 0.4678      | 0.3375     | 0.135*      |
| H16B | 0.9608     | 0.5550      | 0.3374     | 0.135*      |
| H16C | 0.9032     | 0.4821      | 0.2701     | 0.135*      |
| C17  | 1.0080 (7) | -0.0937 (4) | 0.2575 (5) | 0.0732 (16) |
| H17A | 0.9188     | -0.1287     | 0.2388     | 0.088*      |
| H17B | 1.0713     | -0.1237     | 0.3045     | 0.088*      |
| C18  | 1.0986 (8) | -0.0743 (5) | 0.1784 (5) | 0.092 (2)   |
| H18A | 1.0366     | -0.0409     | 0.1348     | 0.139*      |
| H18B | 1.1274     | -0.1269     | 0.1510     | 0.139*      |
| H18C | 1.1897     | -0.0428     | 0.1989     | 0.139*      |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Col | 0.0453 (4)  | 0.0551 (5)  | 0.0342 (4)  | -0.0015 (3)  | 0.0081 (3)  | 0.0025 (3)   |
| S1  | 0.1125 (15) | 0.0887 (12) | 0.0451 (9)  | -0.0064 (9)  | -0.0165 (9) | 0.0053 (7)   |
| S2  | 0.0513 (9)  | 0.0844 (12) | 0.1190 (16) | 0.0024 (7)   | 0.0205 (9)  | 0.0091 (10)  |
| 01  | 0.071 (2)   | 0.058 (2)   | 0.052 (2)   | 0.0013 (17)  | 0.0125 (17) | -0.0004 (17) |
| 02  | 0.080 (3)   | 0.053 (2)   | 0.069 (2)   | 0.0074 (18)  | 0.017 (2)   | -0.0040 (18) |
| N1  | 0.0404 (19) | 0.068 (3)   | 0.0341 (19) | -0.0015 (17) | 0.0057 (15) | 0.0015 (18)  |
| N2  | 0.049 (2)   | 0.059 (2)   | 0.044 (2)   | -0.0027 (18) | 0.0031 (16) | 0.0038 (19)  |
| N3  | 0.052 (2)   | 0.079 (3)   | 0.042 (2)   | -0.003 (2)   | 0.0059 (19) | 0.004 (2)    |
| N4  | 0.047 (2)   | 0.079 (3)   | 0.047 (2)   | -0.005 (2)   | 0.0087 (18) | -0.001 (2)   |
| C1  | 0.042 (2)   | 0.051 (3)   | 0.045 (3)   | 0.0039 (18)  | 0.0017 (19) | -0.005 (2)   |
| C2  | 0.062 (3)   | 0.082 (4)   | 0.054 (3)   | 0.011 (3)    | 0.011 (3)   | -0.017 (3)   |
| C3  | 0.058 (3)   | 0.108 (5)   | 0.042 (3)   | 0.008 (3)    | 0.017 (2)   | -0.014 (3)   |
| C4  | 0.044 (3)   | 0.096 (4)   | 0.039 (3)   | 0.000 (2)    | -0.001 (2)  | -0.001 (3)   |
| C5  | 0.060 (3)   | 0.119 (6)   | 0.039 (3)   | -0.013 (3)   | 0.016 (2)   | 0.008 (3)    |
| C6  | 0.067 (4)   | 0.110 (5)   | 0.047 (3)   | -0.022 (3)   | 0.013 (3)   | 0.020 (3)    |
| C7  | 0.053 (3)   | 0.076 (4)   | 0.048 (3)   | -0.016 (3)   | -0.001 (2)  | 0.013 (3)    |
| C8  | 0.068 (4)   | 0.076 (4)   | 0.063 (4)   | -0.016 (3)   | -0.007 (3)  | 0.026 (3)    |
| C9  | 0.070 (4)   | 0.059 (3)   | 0.072 (4)   | -0.008 (3)   | -0.007 (3)  | 0.012 (3)    |
| C10 | 0.053 (3)   | 0.056 (3)   | 0.055 (3)   | 0.001 (2)    | -0.006 (2)  | 0.002 (2)    |
|     |             |             |             |              |             |              |

| C11         | 0.044 (2)        | 0.070 (3)   | 0.037 (2) | -0.007 (2)   | -0.0017 (18) | 0.008 (2)  |
|-------------|------------------|-------------|-----------|--------------|--------------|------------|
| C12         | 0.037 (2)        | 0.064 (3)   | 0.035 (2) | -0.0055 (19) | 0.0021 (18)  | 0.008 (2)  |
| C13         | 0.055 (3)        | 0.052 (3)   | 0.044 (3) | 0.001 (2)    | 0.007 (2)    | 0.005 (2)  |
| C14         | 0.060 (3)        | 0.051 (3)   | 0.043 (3) | -0.005 (2)   | 0.007 (2)    | -0.001 (2) |
| C15         | 0.072 (4)        | 0.064 (4)   | 0.079 (4) | 0.000 (3)    | 0.008 (3)    | -0.009 (3) |
| C16         | 0.090 (5)        | 0.065 (4)   | 0.120 (6) | -0.007 (4)   | 0.033 (4)    | 0.009 (4)  |
| C17         | 0.069 (4)        | 0.062 (3)   | 0.088 (4) | 0.007 (3)    | -0.001 (3)   | -0.016 (3) |
| C18         | 0.090 (5)        | 0.084 (5)   | 0.106 (6) | 0.006 (4)    | 0.026 (4)    | -0.022 (4) |
|             |                  |             |           |              |              |            |
| Geometric p | arameters (Å, °) |             |           |              |              |            |
| Co1—N3      |                  | 1.928 (4)   | C5–       | C6           | 1.35         | 2 (9)      |
| Co1—N4      |                  | 1.930 (5)   | C5–       | -H5          | 0.93         | 00         |
| Co1—N1      |                  | 2.035 (4)   | C6-       | —С7          | 1.43         | 1 (8)      |
| Co1—N2      |                  | 2.038 (4)   | C6-       | -H6          | 0.93         | 00         |
| S1—C13      |                  | 1.609 (5)   | С7-       | C11          | 1.39         | 1 (7)      |
| S2-C14      |                  | 1.613 (6)   | С7-       | С8           | 1.40         | 3 (9)      |
| 01—C1       |                  | 1.345 (6)   | C8–       | С9           | 1.36         | 5 (9)      |
| O1—C15      |                  | 1.447 (7)   | C8–       | -H8          | 0.93         | 00         |
| O2—C10      |                  | 1.341 (7)   | С9-       | C10          | 1.41         | 9 (8)      |
| O2—C17      |                  | 1.441 (7)   | С9-       | -H9          | 0.93         | 00         |
| N1-C1       |                  | 1.329 (6)   | C11       | —C12         | 1.42         | 2(7)       |
| N1-C12      |                  | 1.371 (6)   | C15       | —C16         | 1.47         | 8 (8)      |
| N2-C10      |                  | 1.324 (7)   | C15       | —H15A        | 0.97         | 00         |
| N2—C11      |                  | 1.372 (6)   | C15       | —H15B        | 0.97         | 00         |
| N3—C13      |                  | 1.156 (7)   | C16       | —H16A        | 0.96         | 00         |
| N4—C14      |                  | 1.151 (7)   | C16       | —H16B        | 0.96         | 00         |
| C1—C2       |                  | 1.406 (7)   | C16       | —H16C        | 0.96         | 00         |
| C2—C3       |                  | 1.330 (9)   | C17       | —C18         | 1.50         | 1 (9)      |
| С2—Н2       |                  | 0.9300      | C17       | —H17A        | 0.97         | 00         |
| C3—C4       |                  | 1.415 (9)   | C17       | —H17B        | 0.97         | 00         |
| С3—Н3       |                  | 0.9300      | C18       | —H18A        | 0.96         | 00         |
| C4—C12      |                  | 1.404 (7)   | C18       | —H18B        | 0.96         | 00         |
| C4—C5       |                  | 1.417 (9)   | C18       | —H18C        | 0.96         | 00         |
| N3—Co1—N    | [4               | 109.33 (18) | С7-       | C8H8         | 119.         | 2          |
| N3—Co1—N    | 1                | 116.67 (17) | C8–       | C9C10        | 118.         | 2 (6)      |
| N4—Co1—N    | [1               | 119.86 (17) | C8–       | С9Н9         | 120.         | 9          |
| N3—Co1—N    | 12               | 114.22 (17) | C10       | —С9—Н9       | 120.         | 9          |
| N4—Co1—N    | 12               | 113.12 (18) | N2-       | C10O2        | 112.         | 2 (4)      |
| N1—Co1—N    | 12               | 81.08 (16)  | N2-       | С10С9        | 122.         | 1 (5)      |
| C1-01-C1    | 5                | 119.7 (4)   | O2–       | -С10-С9      | 125.         | 7 (5)      |
| С10—О2—С    | 17               | 120.1 (4)   | N2-       | C11C7        | 123.         | 2 (5)      |
| C1—N1—C1    | 2                | 118.1 (4)   | N2-       | C11C12       | 116.         | 5 (4)      |
| C1—N1—Co    | 1                | 128.9 (3)   | С7-       | C11C12       | 120.         | 3 (5)      |
| C12—N1—C    | 01               | 113.0 (3)   | N1-       | C12C4        | 123.         | 3 (5)      |
| C10—N2—C    | 11               | 118.7 (4)   | N1-       | C12C11       | 116.         | 5 (4)      |
| C10—N2—C    | 01               | 128.5 (3)   | C4-       |              | 120.         | 1 (4)      |
| C11—N2—C    | 01               | 112.8 (3)   | N3-       |              | 178.         | 6 (5)      |
| C13—N3—C    | o1               | 170.6 (4)   | N4-       |              | 179.         | 6 (5)      |
|             |                  |             |           |              |              |            |

| C14—N4—Co1    | 168.0 (4)  | O1—C15—C16     | 106.5 (5)  |
|---------------|------------|----------------|------------|
| N1—C1—O1      | 111.4 (4)  | O1—C15—H15A    | 110.4      |
| N1—C1—C2      | 121.7 (5)  | C16—C15—H15A   | 110.4      |
| O1—C1—C2      | 126.9 (5)  | O1-C15-H15B    | 110.4      |
| C3—C2—C1      | 120.0 (6)  | C16—C15—H15B   | 110.4      |
| С3—С2—Н2      | 120.0      | H15A—C15—H15B  | 108.6      |
| C1—C2—H2      | 120.0      | C15—C16—H16A   | 109.5      |
| C2—C3—C4      | 121.3 (5)  | C15—C16—H16B   | 109.5      |
| С2—С3—Н3      | 119.3      | H16A—C16—H16B  | 109.5      |
| С4—С3—Н3      | 119.3      | С15—С16—Н16С   | 109.5      |
| C12—C4—C3     | 115.5 (5)  | H16A—C16—H16C  | 109.5      |
| C12—C4—C5     | 118.3 (6)  | H16B—C16—H16C  | 109.5      |
| C3—C4—C5      | 126.2 (6)  | O2—C17—C18     | 105.2 (5)  |
| C6—C5—C4      | 121.9 (5)  | O2—C17—H17A    | 110.7      |
| С6—С5—Н5      | 119.1      | C18—C17—H17A   | 110.7      |
| С4—С5—Н5      | 119.1      | O2-C17-H17B    | 110.7      |
| C5—C6—C7      | 120.6 (5)  | С18—С17—Н17В   | 110.7      |
| С5—С6—Н6      | 119.7      | H17A—C17—H17B  | 108.8      |
| С7—С6—Н6      | 119.7      | C17—C18—H18A   | 109.5      |
| C11—C7—C8     | 116.4 (5)  | C17—C18—H18B   | 109.5      |
| C11—C7—C6     | 118.8 (6)  | H18A—C18—H18B  | 109.5      |
| C8—C7—C6      | 124.8 (5)  | C17—C18—H18C   | 109.5      |
| C9—C8—C7      | 121.5 (5)  | H18A—C18—H18C  | 109.5      |
| С9—С8—Н8      | 119.2      | H18B—C18—H18C  | 109.5      |
| N3—Co1—N1—C1  | -68.1 (4)  | C6—C7—C8—C9    | 179.7 (5)  |
| N4—Co1—N1—C1  | 67.6 (4)   | C7—C8—C9—C10   | -0.3 (8)   |
| N2—Co1—N1—C1  | 179.2 (4)  | C11—N2—C10—O2  | -179.4 (4) |
| N3—Co1—N1—C12 | 111.0 (3)  | Co1—N2—C10—O2  | -0.1 (6)   |
| N4—Co1—N1—C12 | -113.3 (3) | C11—N2—C10—C9  | 0.3 (7)    |
| N2—Co1—N1—C12 | -1.7 (3)   | Co1—N2—C10—C9  | 179.6 (4)  |
| N3—Co1—N2—C10 | 66.4 (4)   | C17—O2—C10—N2  | 178.8 (4)  |
| N4—Co1—N2—C10 | -59.6 (5)  | C17—O2—C10—C9  | -0.9 (8)   |
| N1—Co1—N2—C10 | -178.3 (4) | C8—C9—C10—N2   | 0.3 (8)    |
| N3—Co1—N2—C11 | -114.3 (3) | C8—C9—C10—O2   | 179.9 (5)  |
| N4—Co1—N2—C11 | 119.8 (3)  | C10-N2-C11-C7  | -0.8 (7)   |
| N1—Co1—N2—C11 | 1.0 (3)    | Co1—N2—C11—C7  | 179.8 (4)  |
| N3—Co1—N4—C14 | -90 (2)    | C10-N2-C11-C12 | 179.2 (4)  |
| N1—Co1—N4—C14 | 132 (2)    | Co1—N2—C11—C12 | -0.2 (5)   |
| N2-Co1-N4-C14 | 39 (2)     | C8—C7—C11—N2   | 0.7 (7)    |
| C12—N1—C1—O1  | -179.1 (4) | C6—C7—C11—N2   | -179.1 (4) |
| Co1—N1—C1—O1  | 0.0 (6)    | C8—C7—C11—C12  | -179.3 (5) |
| C12—N1—C1—C2  | 0.0 (7)    | C6—C7—C11—C12  | 0.8 (7)    |
| Co1—N1—C1—C2  | 179.1 (4)  | C1—N1—C12—C4   | 0.0 (7)    |
| C15—O1—C1—N1  | -167.2 (4) | Co1—N1—C12—C4  | -179.2 (4) |
| C15—O1—C1—C2  | 13.7 (8)   | C1—N1—C12—C11  | -178.7 (4) |
| N1—C1—C2—C3   | 0.1 (8)    | Co1—N1—C12—C11 | 2.1 (5)    |
| O1—C1—C2—C3   | 179.0 (5)  | C3—C4—C12—N1   | -0.2 (7)   |
| C1—C2—C3—C4   | -0.3 (9)   | C5—C4—C12—N1   | -179.8 (5) |
| C2—C3—C4—C12  | 0.3 (8)    | C3—C4—C12—C11  | 178.4 (5)  |

| C2—C3—C4—C5  | 179.9 (5)  | C5-C4-C12-C11  | -1.1 (7)   |
|--------------|------------|----------------|------------|
| C12—C4—C5—C6 | 1.4 (8)    | N2-C11-C12-N1  | -1.3 (6)   |
| C3—C4—C5—C6  | -178.1 (6) | C7—C11—C12—N1  | 178.8 (4)  |
| C4—C5—C6—C7  | -0.6 (9)   | N2-C11-C12-C4  | 180.0 (4)  |
| C5—C6—C7—C11 | -0.6 (8)   | C7—C11—C12—C4  | 0.0 (7)    |
| C5—C6—C7—C8  | 179.6 (6)  | C1             | 167.3 (5)  |
| C11—C7—C8—C9 | -0.1 (8)   | C10—O2—C17—C18 | -176.5 (5) |

Fig. 1



